Optogenetics, the control of neural activity using light, is a recent development in the field of clinical neuroscience and has brought significant reform to the domain. The “optogenetic revolution” has fueled the expansion of three main areas: the cell-specific understanding of neurodegenerative disorders, development of new treatment methods and evolution of biotechnological approaches. The possibility created by optogenetics of single-cell manipulation and the identification of specific neuronal pathways allows for a radically clearer grasp of the brain’s functioning. However, despite its promising outlook, the future of optogenetics remains unclear. Especially the transition from animal-based models to human application requires a significant advancement of the field, with technological and physiological obstacles that have so far proven unsurpassable. Thus, the question is posed whether the rapid change which optogenetics brought to clinical neurosciences will continue gaining momentum in the coming years.