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1 Background

It can be argued that the concept of bioengineering began when Alexis Car-
rel and Charles Lindbergh published “The Culture of Organs” in 1938, which
described the equipment and methods which made the in vitro maintenance
of organs possible. The final chapter of the book mentions an ‘ultimate goal’
which suggests increasing the speed of healing wounds. From its conception
in the 1980s to present day, scientists and medical researchers alike have been
investigating the exciting prospects three-dimensional printing offers to the
field of Medicine. Over the course of three decades, advances in this techno-
logy have led to several famous milestones; in the process spawning the term
‘bioprinting’. In contemporary medicine, bioprinting is beginning to play a
role in regenerative medicine and clinical research by providing scientists wi-
th the ability to build tissue-engineering scaffolds, prosthetic limbs and even
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1. Background

It can be argued that the concept of bioengineering began
when Alexis Carrel and Charles Lindbergh published “The

Culture of Organs” in 1938, which described the equipment
and methods which made the in vitro maintenance of organs
possible. The final chapter of the book mentions an ‘ultimate
goal’ which suggests increasing the speed of healing wounds.
From its conception in the 1980s to present day, scientists
and medical researchers alike have been investigating the ex-
citing prospects three-dimensional printing offers to the field
of Medicine. Over the course of three decades, advances in
this technology have led to several famous milestones; in the
process spawning the term ‘bioprinting’. In contemporary
medicine, bioprinting is beginning to play a role in regener-
ative medicine and clinical research by providing scientists
with the ability to build tissue-engineering scaffolds, pros-
thetic limbs and even functioning kidneys. One of the earliest
cases of bioprinting made international headlines in 1999,
when the world’s first 3D printed collagen scaffold was used
for bladder augmentations in dogs. Then in 2009, researchers
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Integrin alpha-6 in Prostate Cancer
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Abstract

In Western populations, prostate cancer is one of the leading causes of cancer-related deaths in
males, second only to lung cancer. Currently, relapse rates are still as high as 30% within 10 years
of primary treatment, largely due to early micrometastatic progression in bone marrow. Patients with
metastatic tumour progression have been shown to have significantly worse survival outcomes than their
non-metastatic counterparts. The exact mechanism of tumour invasion in prostate cancer metastasis is
poorly understood. Therefore, early diagnosis of aggressive prostate cancer has enormous potential to
improve survival and quality of life, and there is a need for novel molecular markers in the early identification
of malignant potential. Integrin α6 has been implicated in the migration and invasion processes of prostate
tumour cells, and poses a potential target for future prostate cancer therapy
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1. Introduction

In Western populations, prostate cancer is one of the lead-
ing causes of cancer-related deaths in males, second only to
lung cancer [1]. In 2015, the Australian Bureau of Statistics
reported more than 18,000 incidences of prostate cancer,
with over 3000 deaths [2]. Despite this, the frequency of
relapse is still as high as 30% within 10 years of primary
treatment [3, 4, 5] of which a large portion is owed to early
micrometastatic progression in bone marrow [6]. Studies
have shown that the five-year survival rate of patients with
contained prostate cancer is more than triple that of their
metastatic counterparts [7]. As such, early diagnosis of
aggressive prostate cancer has enormous potential to im-
prove survival and quality of life [8, 9]. Currently, there
are insufficient diagnostic tools to discriminate between
indolent tumours and those with high propensity to metas-
tasise. Therefore, there is a clinical imperative for novel
molecular markers in the early identification of malignant
potential, which could ultimately lead to the development
of therapeutic interventions against cancer cell invasion
and migration.

The existence of a stem cell subpopulation in the prostate
has been well-documented and is proposed to reside within
the basal cell compartment of the prostate gland [10, 11].
Their ability to self-renew and undergo multiple-lineage
differentiation has led to studies about their tumorigenic

properties. Over the past decade, however, the existence
of a minor subpopulation of tumour cells known as cancer
stem cells (CSCs) has been proposed. These CSCs are
titled accordingly due to their capacity for self-renewal
and invasion, as well as their differential ability to recapit-
ulate the phenotype of their primary tumour [12, 13, 14].
Their stem cell-like characteristics have been suggested
to be responsible for solid tumorigenesis, metastasis and
even some resistance to chemotherapy, as a response to
their ability to divide asymmetrically [15, 16, 17, 18, 19].
Understandably, targeting abnormal CSCs will necessar-
ily be preceded by specific knowledge of marker proteins
expressed in this subpopulation.

To date, studies have identified several putative mark-
ers of prostate stem cells, including a number of adhesion
molecules known as integrins [20, 21, 22]. Research sur-
rounding integrin involvement in cancer biology, and partic-
ularly prostate cancer progression, has attracted significant
interest in recent decades. This review focuses specifically
on one integrin, integrin α6 (ITGA6/CD49f), in light of
the growing body of evidence suggesting its implication
in prostate cancer susceptibility, CSC biology and tumour
cell migration and metastasis. The aim of this review is
to convey an overview of the biological function of inte-
grin α6, present current evidence about its diagnostic and
prognostic value and ultimately discuss the potential role
of this integrin as a future target for drug design.
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2. Materials and Methods

2.1 Search strategy and inclusion criteria
An electronic search of the MEDLINE and EMBASE
databases was performed using the following MeSH and
other keywords: integrin alpha6, alpha 6, alpha-6, al-
pha6, ITGA6, prostate cancer and prostate neoplasms. The
search was restricted to articles in the English language.
There was no limitation for publication year. Abstract sub-
missions and studies for which integrin alpha 6 was not the
primary focus were excluded. Studies were selected for
inclusion if they contained empirical research that investi-
gated integrin α6 natin prostate cancers and then judged
on their focus on integrin alpha-6 and contribution to the
review.

Reference lists of all relevant articles were hand-searched
for additional relevant studies. Titles and/or abstracts of
relevant studies from this search strategy were screened by
the author. Full-text articles were retrieved and screened
when abstracts and titles were insufficient for determining
inclusion or exclusion in the review.

3. Results
Eighteen relevant studies, published between 1994–2017
were included in this review. Six publications reported in-
tegrin α6 as a putative stem cell marker in prostate cancer,
while two of the eighteen studies investigated its role in
bony metastasis and invasion in a xenograft model. Five
studies reported an association between increased expres-
sion of integrin α6 and metastatic progression and invasive
phenotype of prostate cancer cell, although one study re-
ported integrin α6 as a predictor of non-aggressive disease.
Several studies were conducted by the same group of in-
vestigators.

Integrin α6 expression is persistent in invasive prostate
cancer cell lines. The expression of this integrin is associ-
ated with aggressive phenotype, poor patient progression
and increased metastasis. Its structural variant, integrin
α6p is also reported to contribute to invasion and migra-
tion of prostate tumour cells on laminin.

4. Discussion

4.1 Structure of prostate - normal and neoplastic
The normal prostatic epithelium comprises of pseudostrati-
fied layers of luminal, basal and neuroendocrine cells [23]
which form part of a duct-acinar system [24, 25]. These
secretory epithelial cells are supported by the basal lamina,
found at the epithelium-stroma interface [26, 27, 28]. The
significance of the basal lamina is two-fold; a) structurally,
it represents a physical barrier which must be breached in
the context of metastasis [29, 30, 31] and b) functionally,
its molecular composition of proteoglycans, collagens and
non-collagenous glycoproteins such as laminin [32] lend

it to involvement in cellular processes such as attachment,
migration and differentiation [33, 34]. This is consistent
with evidence of altered composition, such as loss of col-
lagen type VII [32, 35] and laminin B2t [36] in neoplastic
basal lamina.

Currently, the exact cellular origin of CSCs is still
widely debated. The greater expression of luminal cell
markers on prostate cancer cells than basal cell markers
has led to the hypothesis that prostate cancer arises from
terminally differentiated luminal cells [37, 38]. However,
there is also a belief that intermediate progenitors [39, 40]
or subpopulations of multipotent stem cells from the basal
epithelial layer may give rise to prostate cancer instead
[41, 42]. Consequently, there still exists a paucity of ac-
cepted techniques used to characterize and isolate CSCs in
prostate cancer tissue.

4.2 Structure and biological function of integrin-
α6

Integrins are a large group of heterodimeric transmem-
brane glycoproteins that mediate interactions between cells
and extracellular matrix (ECM) through molecular adhe-
sion. They are comprised of one α subunit and one β

subunit, which together determine ligand specificity and
facilitate bidirectional signaling upon activation by ligands
[43]. Each subunit contains an extracellular domain for lig-
and attachment, a transmembrane domain and a short tail
within the cytoplasm [44]. This cytoplasmic tail interac-
tion allows integrins to serve as sensors of dimensionality
within the matrix [45] and transduce mechanical forces
from the ECM into biochemical survival signals, result-
ing in the inhibition of a p53-regulated apoptotic pathway
[46, 47]. Upon ligand binding, integrins complex with the
cell membrane to form focal adhesions, consisting of sig-
naling and adaptor proteins [48, 49]. These in turn engage
relevant kinases to initiate downstream intracellular signal-
ing cascades [44] such as the focal adhesion kinase (FAK)
and the phosphatidylinositol 3-kinase (PI3K)/AKT path-
ways [50, 51] and thus regulate proliferation, migration,
invasion and cell migration [45]. Additionally, crosstalk
between the activation of AKT and p53 degradation via
phosphorylation of Mdm2 has been discovered [52, 53].
Integrins play a critical role in numerous biological events
involving ECM remodeling, including wound healing and
embryonic development [54].

4.3 Integrin α6 structure
One integrin that has raised particular interest in the frame-
work of prostate cancer progression is integrin α6. This
mechanosensing integrin is encoded by the ITGα6 gene,
and dimerizes with β1 or β4 chains to form either α6β1 or
α6β4 complexes, respectively [55]. Both of these serve as
receptors for the laminin family of ECM proteins, despite
differing expressions and roles. α6β1 is widely expressed
in epithelia and associated with strong anchorage and stabi-
lization of skin tissue through hemidesmosome formation
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[56, 57]. α6β4 is involved in cellular migration such as
embryogenic organ and tissue development [58, 59] and
prominently identified on platelets, macrophages, lympho-
cytes and many epithelial cells [60].

4.4 Integrin-α6 function, regulation and expres-
sion

The major function of laminin-binding integrin-α6 is main-
taining stable anchorage and structural integrity of skin
and glandular epithelium whilst withstanding mechanical
and shear stresses [61]. Mutations of the ITGα6 gene has
been associated with basement separation and epithelial
blistering of varying severity [62, 63, 64]. In the con-
text of CSCs, integrin-α6 has also been demonstrated to
play a key regulatory role in self-renewal, proliferation
and tumour-formation capacity in glioblastoma stem cells
cervical uterine cancer cells [65, 66].

Despite its important role in CSCs, there is a shortage
in understanding of the molecular mechanisms involved in
the regulation of integrin-α6. The limited current knowl-
edge surrounding the stem cell self-renewal control by
integrin-α6 derives mainly from studies in embryonic stem
cells (ESCs) and breast CSCs. OCT4 and SOX2 are two
pluripotent-related genes which maintain the self-renewal
capacity of undifferentiated ESCs (67). Yu et al. (2012) re-
vealed that increased expression of OCT4 and SOX2 led to
upregulation of integrin-α6 expression, and demonstrated
the regulation of integrin-α6 through the direct binding
of OCT4 and SOX2 on specific regions of the integrin-α6
promoter [68].

In normal prostatic tissue, the basal lamina boasts a
great diversity of molecular components, including col-
lagen IV, VII, entactin, fibronectin, vitronectin, tenascin,
laminin 5, 6, 7 (containing the α3 chain) and laminin 10-11
(containing α5 chain) (32, 69). Integrin-α6 is just one of a
wide range of integrin receptor units which are polarised
on the basal cell layer, adjacent to the basal lamina.

In human prostatic carcinoma, however, all but a select
few components of the basal lamina are lost. As a result,
there is a significant loss of the corresponding integrin units
[70] which is consistent with the lack of integrin subunits
observed on the tumour cell surface of invasive prostate
carcinomas [36]. The α6 integrin is a notable exception
to this, demonstrating a persistent expression in 69% of
invasive prostate carcinomas [70].

4.5 Integrin-α6 expression and patient prognosis
In human prostate cancer, integrin α6 expression is pre-
served in a diffuse manner on the plasma membrane, rather
than being polarised on the basal layers [36]. The pro-
gression of prostate tumour development generally begins
with the emergence of precursor prostatic intraepithelial
neoplasia lesions, followed by carcinoma in situ and even-
tually, extracapsular invasion into neighbouring structures
and distant metastases sites [36]. Overwhelmingly, cur-
rent evidence supports the theory that elevated expression

of integrin α6β1 is correlated with an aggressive pheno-
type during tumour progression, poor patient prognosis and
increased metastasis [6, 71, 72, 73, 74].

Rabinovitz, Nagle & Cress (1995) investigated the in-
vasive phenotypic features of human prostate carcinoma
cells by comparing the α6-high with α6-low cell subpopu-
lations. In vitro assays were used to demonstrate a signifi-
cantly higher rate of random migration on coated laminin
in the α6-high sublines as compared with the α6-low sub-
lines. α6-antibodies were then used to confirm the involve-
ment of α6, and particularly α6β1, as it was the primary
distinguisher between α6-high with α6-low cells.

Severely compromised immunodeficient mice were
then used to assess the invasion and migration capacity
of the α6 sublines in vivo. α6-high subpopulations were
found to exhibit a significantly higher rate of invasion
through the laminin-rich mice diaphragm, as characterized
by several basement membrane breaching points. These
findings are consistent with evidence suggesting an associ-
ation between increasing prostatic intraepithelial neoplasia
grades and progressive basal cell disruption [75].

This could be partially explained by the role of the
integrin-ECM interaction in providing traction for tumour
cell invasion during dissociation of the cell from ECM
proteins at the leading edge of the cell migratory path
[76, 77] or the extracapsular escape facilitated by laminin-
coated nerves [72]. However, this is conflicted by some
evidence noting an association between high expression
levels of integrin α6 and lowered recurrence rate, disease-
associated death following radical prostatectomy, as well as
other non-aggressive tumour features such as low Gleason
score (<7), serum PSA levels of 10ng/mL and pT2 stage
[78]. Integrin α6 has also been shown to be a predictor of
biochemical and local recurrence of prostate cancer [79].

More recently, a novel structural variant of integrin α6,
called integrin α6p has been identified [7]. This is formed
by post-translational proteolytic cleavage of the ligand-
binding extracellular domain by urokinase-type plasmino-
gen activator (uPA) on the tumour cell surface [70, 80].
The cleavage of integrin α6 contributes to invasion and
migration of the tumour cell on laminin, whilst in vitro
and in vivo studies of integrin α6p have shown that inhibi-
tion of the cleavage function significantly hinders tumour
migration within the bone [81, 82] and encourages the for-
mation of curative-type bone lesions [73, 83, 84]. These
results highlight the prevention of integrin α6p production
as a potential novel treatment strategy for delaying disease
progression within the bone.

4.6 Integrin-targeted modalities for prostate can-
cer treatment in lab and future directions

Given the growing recognition of integrins’ roles in fa-
cilitating prostate cancer invasion and metastasis, there
has been increasing research into future treatment modali-
ties targeted at these adhesion molecules. Various groups
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have developed pre-clinical models to investigate the func-
tional significance of targeting integrin α6. For example,
King 2008 demonstrated the reduced tumour cell migra-
tion and onset and degree of bone pain and fractures in
xenograft mouse models injected with uncleaved integrin
α6 (α6pB1) as compared with cleaved (α6B1) [85]. A
similar model has since been used by Landowski 2014,
in testing an integrin α6 functional blocking monoclonal
antibody, called J8H [6]. The results of this study showed
promising outcomes of J8H in blocking tumour progression
and subsequently improving survival outcomes without im-
pacting cell adhesion to laminin. Despite this, currently
there are only four drugs that have passed Phase II trial for
treatment of metastatic prostate cancer (Cilengitide, Etara-
cizumab, Intetumumab and Abituzumab) [86]. One reason
for this limited number of integrin antibodies in clinical
trial is the difficulty posed by their bidirectional nature of
cell signalling, as targeting these integrins may lead to the
altered expression and function of other receptors [86]. Fur-
thermore, most integrins are not constitutively active, and
therefore, change their expression in response to changes
in external stimuli, including therapy. This complicates
integrin antagonism, and could limit clinical effectiveness
of targeted therapy.

5. Conclusion
The need for early detection and prevention of tumour
cell metastasis drives the search for greater diagnostic and
prognostic biomarkers in prostate cancer. Integrin-targeted
treatment presents as a promising area in which drug devel-
opment may have a significant impact on patient survival.
There is still much to learn about the role of integrins in
prostate tumour cell migration and invasion, and the clin-
ical significance of integrin inhibition in prostate cancer
is still unclear. Whilst the pool of preclinical evidence
supporting a role for integrin α6 in prostate cancer inva-
sion, future clinical studies of bony metastasis prevention
via integrin inhibition are required. Combined therapy of
integrin treatment with radiotherapy is also a considera-
tion for future research, as it has the potential to increase
prostate tumour sensitivity to radiation and drug therapies
[87]. A greater understanding of integrin signalling and ex-
pressional changes modulates our prospects of developing
targeted biological interventions to slow prostate cancer
progression.
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